[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]
Re: Maximum voltage of a toroid
- To: tesla@xxxxxxxxxx
- Subject: Re: Maximum voltage of a toroid
- From: "Tesla list" <tesla@xxxxxxxxxx>
- Date: Mon, 05 Sep 2005 07:13:01 -0600
- Delivered-to: testla@pupman.com
- Delivered-to: tesla@pupman.com
- Old-return-path: <vardin@twfpowerelectronics.com>
- Resent-date: Mon, 5 Sep 2005 07:14:45 -0600 (MDT)
- Resent-from: tesla@xxxxxxxxxx
- Resent-message-id: <5F_yeB.A.d2H.ETEHDB@poodle>
- Resent-sender: tesla-request@xxxxxxxxxx
Original poster: "Antonio Carlos M. de Queiroz" <acmdq@xxxxxxxxxx>
Tesla list wrote:
Original poster: "Derek Woodroffe" <tesla@xxxxxxxxxxxxxxx>
>A table listing breakdown voltages (kV) for several toroids with major
radius R and minor radius r:
r/R 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450
V/R 639.43 998.45 1261.10 1470.00 1644.57 1795.52 1929.30 2050.02 2160.33
>Using the geometrical mean between r and R as the effective radius of an
equivalent sphere, reasonable values are found:
r/R 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450
V/R 670.82 948.68 1161.90 1341.64 1500.00 1643.17 1774.82 1897.37 2012.46
So from the above then (excuse my poor maths)
V(kv)=3*exp( ( log(R)+log(r) ) /2 ) where R & r are in mm, is a better
approximation?
What I used was V = 3000*sqrt(r*R). Same thing. It's easy to find a better
approximation.
Antonio Carlos M. de Queiroz