[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [TCML] bipolar coil



If you calculate the resonant match for the 150 mA current at 9 kV, you get
a value for Z (impedance).





2008/5/2 Kris Grillo <kristianisawesome@xxxxxxxxx>:

> I'm putting together a small twin coil setup and I'm wondering if anyone
> could look over these numbers for me. The secondaries are 2" pvc (2.375" od)
> with 975 turns of 30 gauge and a 3 x 12 toroid each. The power supply is 2x
> 9KV 60mA and a 9KV 30 mA NSTs in parallel for 9KV 150mA. The gap is a 120
> BPS synchronous rotary gap. The primaries are 6 turns of 1/8" OD copper
> tubing with .25" spacing and inside radius of 2.4375".
>
> Here's where I'm stuck. Javatc is saying that the SRG LTR cap is .1153 uf.
> Again, this figure seems relatively huge. Why does the cap size go up so
> dramatically with the sync gap? The primary is going to be really short with
> a cap that big. I've tried using javatc but I'm not sure how to input the
> coil specs. I tried inputing the two coils as one long coil and putting a
> toroid at either end and a single primary in the middle.I estimated about 4'
> of lead using 1/8" tubing. This gives me a little more than 4 turns on the
> primary so I'm guessing less than 2 turns per primary.
>
> When it comes to the wiring, I have seen schematics that show the
> primaries in parallel and ones that show them in series. Which is best, and
> why?
>
> Does anyone have any advise on this? I'm itching to use this sync gap I
> made. In fact, I started this project when I decided to not use the gap on
> my 6" coil. I've attached the Javatc file for the above described input
> labeled twin specs. I have also included the Javatc file with just one of
> the two sets of sec, pri and topload, for measurement. Those are labeled
> .1166uf.
>
> Thanks,
>
> ~Kris
>
>
>
>
>
>
> ---------------------------------
> Be a better friend, newshound, and know-it-all with Yahoo! Mobile.  Try it
> now.
>
> function loadDemo(form) {
> Clear(form);
> z = 0; if(z==0){form.units.selectedIndex=0; inches=true;}
> if(z==1){form.units.selectedIndex=1; cm=true;}
> z = 0; if(z==0){form.ambient.selectedIndex=0; fahrenheit=true;}
> if(z==1){form.ambient.selectedIndex=1; centigrade=true;}
> GetUnits(form);
> z = 0; if(z==1){form.s_ws.checked=true;form.s_awg.checked=false;}
> if(z==0){form.s_ws.checked=false;form.s_awg.checked=true;}
> z = 0; if(z==1){form.s_Al.checked=true;form.s_Cu.checked=false;}
> if(z==0){form.s_Al.checked=false;form.s_Cu.checked=true;}
> z = 1; if(z==1){form.p_ws.checked=true;form.p_awg.checked=false;}
> if(z==0){form.p_ws.checked=false;form.p_awg.checked=true;}
> z = 0; if(z==1){form.p_Al.checked=true;form.p_Cu.checked=false;}
> if(z==0){form.p_Al.checked=false;form.p_Cu.checked=true;}
> z = 68; {eval(z); temp = z; form.temp.value = temp;}// ambient temperature
> z = 0; {eval(z); g_radius = z; form.g_radius.value = g_radius;}
> z = 0; {eval(z); w_radius = z; form.w_radius.value = w_radius;}
> z = 0; {eval(z); r_height = z; form.r_height.value = r_height;}
> z = 1.187; {eval(z); s_radius1 = z; form.s_radius1.value = s_radius1;}
> z = 1.187; {eval(z); s_radius2 = z; form.s_radius2.value = s_radius2;}
> z = 2; {eval(z); s_height1 = z; form.s_height1.value = s_height1;}
> z = 25; {eval(z); s_height2 = z; form.s_height2.value = s_height2;}
> z = 1950; {eval(z); s_turn = z; form.s_turn.value = s_turn;}
> z = 30; {eval(z); s_wd = z; form.s_wd.value = s_wd;}
> z = 2.4375; {eval(z); p_radius1 = z; form.p_radius1.value = p_radius1;}
> z = 4.005; {eval(z); p_radius2 = z; form.p_radius2.value = p_radius2;}
> z = 13.5; {eval(z); p_height1 = z; form.p_height1.value = p_height1;}
> z = 13.5; {eval(z); p_height2 = z; form.p_height2.value = p_height2;}
> z = 4.1805; {eval(z); p_turn = z; form.p_turn.value = p_turn;}
> z = 0.125; {eval(z); p_wd = z; form.p_wd.value = p_wd;}
> z = 0.1166; {eval(z); Cp_uF = z; form.Cp_uF.value = Cp_uF;}
> z = 48; {eval(z); Lead_Length = z; form.Lead_Length.value = Lead_Length;}
> z = 0.125; {eval(z); Lead_Diameter = z; form.Lead_Diameter.value =
> Lead_Diameter;}
> z = 0; {eval(z); desired_k = z; form.desired_k.value = desired_k;}
> z = 3; {eval(z); t_inner = z; form.t_inner.value = t_inner;}
> z = 12; {eval(z); t_outer = z; form.t_outer.value = t_outer;}
> z = 0; {eval(z); t_height = z; form.t_height.value = t_height;}
> form.TT.checked = true; form.TG.checked = false;
> add_toroid();
> z = 3; {eval(z); t_inner = z; form.t_inner.value = t_inner;}
> z = 12; {eval(z); t_outer = z; form.t_outer.value = t_outer;}
> z = 27; {eval(z); t_height = z; form.t_height.value = t_height;}
> form.TT.checked = true; form.TG.checked = false;
> add_toroid();
> z = 120; {eval(z); x_Vin = z; form.x_Vin.value = x_Vin;}
> z = 9000; {eval(z); x_Vout = z; form.x_Vout.value = x_Vout;}
> z = 150; {eval(z); x_Iout = z; form.x_Iout.value = x_Iout;}
> z = 60; {eval(z); x_Hz = z; form.x_Hz.value = x_Hz;}
> z = 120; {eval(z); x_Vadjust = z; form.x_Vadjust.value = x_Vadjust;}
> z = 0; {eval(z); x_ballast = z; form.x_ballast.value = x_ballast;}
> z = 0; {eval(z); x_Rp = z; form.x_Rp.value = x_Rp;}
> z = 0; {eval(z); x_Rs = z; form.x_Rs.value = x_Rs;}
> z = 1; {eval(z); rsg_ELS = z; form.rsg_ELS.value = rsg_ELS;}
> z = 4; {eval(z); rsg_ELR = z; form.rsg_ELR.value = rsg_ELR;}
> z = 1800; {eval(z); rsg_rpm = z; form.rsg_rpm.value = rsg_rpm;}
> z = 3; {eval(z); rsg_disc_D = z; form.rsg_disc_D.value = rsg_disc_D;}
> z = 0.25; {eval(z); rsg_ELR_D = z; form.rsg_ELR_D.value = rsg_ELR_D;}
> z = 0.25; {eval(z); rsg_ELS_D = z; form.rsg_ELS_D.value = rsg_ELS_D;}
> z = 0; {eval(z); stat_EL = z; form.stat_EL.value = stat_EL;}
> z = 0; {eval(z); stat_EL_D = z; form.stat_EL_D.value = stat_EL_D;}
> z = 0; {eval(z); stat_gap = z; form.stat_gap.value = stat_gap;}
> if(form.SPE.checked==true){form.SPE.checked=true;form.RGE.checked=false;}
> if(form.RGE.checked==true){form.SPE.checked=false;form.RGE.checked=true;}
> }
> J A V A T C version 11.7 - CONSOLIDATED OUTPUT
> Friday, May 02, 2008 3:55:33 PM
>
> Units = Inches
> Ambient Temp = 68°F
>
> ----------------------------------------------------
> Surrounding Inputs:
> ----------------------------------------------------
> 0 = Ground Plane Radius
> 0 = Wall Radius
> 0 = Ceiling Height
>
> ----------------------------------------------------
> Secondary Coil Inputs:
> ----------------------------------------------------
> Current Profile = G.PROFILE_LOADED
> 1.187 = Radius 1
> 1.187 = Radius 2
> 2 = Height 1
> 25 = Height 2
> 1950 = Turns
> 30 = Wire Awg
>
> ----------------------------------------------------
> Primary Coil Inputs:
> ----------------------------------------------------
> 2.4375 = Radius 1
> 4.005 = Radius 2
> 13.5 = Height 1
> 13.5 = Height 2
> 4.1805 = Turns
> 0.125 = Wire Diameter
> 0.1166 = Primary Cap (uF)
> 48 = Total Lead Length
> 0.125 = Lead Diameter
>
> ----------------------------------------------------
> Top Load Inputs:
> ----------------------------------------------------
> Toroid #1: minor=3, major=12, height=0, topload
> Toroid #2: minor=3, major=12, height=27, topload
>
> ----------------------------------------------------
> Secondary Outputs:
> ----------------------------------------------------
> 194.78 kHz = Secondary Resonant Frequency
> 90 deg° = Angle of Secondary
> 23 inch = Length of Winding
> 84.8 inch = Turns Per Unit
> 0.00177 inch = Space Between Turns (edge to edge)
> 1211.9 ft = Length of Wire
> 9.69:1 = H/D Aspect Ratio
> 124.0416 Ohms = DC Resistance
> 30506 Ohms = Reactance at Resonance
> 0.37 lbs = Weight of Wire
> 24.926 mH = Les-Effective Series Inductance
> 10440.503 mH = Lee-Equivalent Energy Inductance
> 22.907 mH = Ldc-Low Frequency Inductance
> 26.785 pF = Ces-Effective Shunt Capacitance
> 26.856 pF = Cee-Equivalent Energy Capacitance
> 32.236 pF = Cdc-Low Frequency Capacitance
> 6.79 mils = Skin Depth
> 20.996 pF = Topload Effective Capacitance
> 166.5291 Ohms = Effective AC Resistance
> 183 = Q
>
> ----------------------------------------------------
> Primary Outputs:
> ----------------------------------------------------
> 194.77 kHz = Primary Resonant Frequency
> 0 % = Percent Detuned
> 0 deg° = Angle of Primary
> 7.05 ft = Length of Wire
> 4.68 mOhms = DC Resistance
> 0.25 inch = Average spacing between turns (edge to edge)
> 1.183 inch = Proximity between coils
> 1.1 inch = Recommended minimum proximity between coils
> 4.136 µH = Ldc-Low Frequency Inductance
> 0.11658 µF = Cap size needed with Primary L (reference)
> 1.606 µH = Lead Length Inductance
> 47.875 µH = Lm-Mutual Inductance
> 0.156 k = Coupling Coefficient
> 0.124 k = Recommended Coupling Coefficient
> 6.41  = Number of half cycles for energy transfer at K
> 16.2 µs = Time for total energy transfer (ideal quench time)
>
> ----------------------------------------------------
> Transformer Inputs:
> ----------------------------------------------------
> 120 [volts] = Transformer Rated Input Voltage
> 9000 [volts] = Transformer Rated Output Voltage
> 150 [mA] = Transformer Rated Output Current
> 60 [Hz] = Mains Frequency
> 120 [volts] = Transformer Applied Voltage
> 0 [amps] = Transformer Ballast Current
> 0 [ohms] = Measured Primary Resistance
> 0 [ohms] = Measured Secondary Resistance
>
> ----------------------------------------------------
> Transformer Outputs:
> ----------------------------------------------------
> 1350 [volt*amps] = Rated Transformer VA
> 60000 [ohms] = Transformer Impedence
> 9000 [rms volts] = Effective Output Voltage
> 11.25 [rms amps] = Effective Transformer Primary Current
> 0.15 [rms amps] = Effective Transformer Secondary Current
> 1350 [volt*amps] = Effective Input VA
> 0.0442 [uF] = Resonant Cap Size
> 0.0663 [uF] = Static gap LTR Cap Size
> 0.1153 [uF] = SRSG LTR Cap Size
> 249 [uF] = Power Factor Cap Size
> 12728 [peak volts] = Voltage Across Cap
> 31820 [peak volts] = Recommended Cap Voltage Rating
> 9.44 [joules] = Primary Cap Energy
> 2141 [peak amps] = Primary Instantaneous Current
> 53.1 [inch] = Spark Length (JF equation using Resonance Research Corp.
> factors)
> 36.8 [amps] = Sec Base Current
>
> ----------------------------------------------------
> Rotary Spark Gap Inputs:
> ----------------------------------------------------
> 1 = Number of Stationary Gaps
> 4 = Number of Rotating Electrodes
> 1800 [rpm] = Disc RPM
> 0.25 = Rotating Electrode Diameter
> 0.25 = Stationary Electrode Diameter
> 3 = Rotating Path Diameter
>
> ----------------------------------------------------
> Rotary Spark Gap Outputs:
> ----------------------------------------------------
> 4 = Presentations Per Revolution
> 120 [BPS] = Breaks Per Second
> 16.1 [mph] = Rotational Speed
> 8.33 [ms] = RSG Firing Rate
> 34.98 [ms] = Time for Capacitor to Fully Charge
> 1.19 = Time Constant at Gap Conduction
> 1768.39 [µs] = Electrode Mechanical Dwell Time
> 69.61 [%] = Percent Cp Charged When Gap Fires
> 8860 [peak volts] = Effective Cap Voltage
> 4.58 [joules] = Effective Cap Energy
> 583821 [rms volts] = Terminal Voltage
> 549 [power] = Energy Across Gap
> 56.5 [inch] = RSG Spark Length (using energy equation)
>
> ----------------------------------------------------
> Static Spark Gap Inputs:
> ----------------------------------------------------
> 0 = Number of Electrodes
> 0 [inch] = Electrode Diameter
> 0 [inch] = Total Gap Spacing
>
> ----------------------------------------------------
> Static Spark Gap Outputs:
> ----------------------------------------------------
> 0 [inch] = Gap Spacing Between Each Electrode
> 0 [peak volts] = Charging Voltage
> 0 [peak volts] = Arc Voltage
> 0 [volts] = Voltage Gradient at Electrode
> 0 [volts/inch] = Arc Voltage per unit
> 0 [%] = Percent Cp Charged When Gap Fires
> 0 [ms] = Time To Arc Voltage
> 0 [BPS] = Breaks Per Second
> 0 [joules] = Effective Cap Energy
> 0 [rms volts] = Terminal Voltage
> 0 [power] = Energy Across Gap
> 0 [inch] = Static Gap Spark Length (using energy equation)
> function loadDemo(form) {
> Clear(form);
> z = 0; if(z==0){form.units.selectedIndex=0; inches=true;}
> if(z==1){form.units.selectedIndex=1; cm=true;}
> z = 0; if(z==0){form.ambient.selectedIndex=0; fahrenheit=true;}
> if(z==1){form.ambient.selectedIndex=1; centigrade=true;}
> GetUnits(form);
> z = 0; if(z==1){form.s_ws.checked=true;form.s_awg.checked=false;}
> if(z==0){form.s_ws.checked=false;form.s_awg.checked=true;}
> z = 0; if(z==1){form.s_Al.checked=true;form.s_Cu.checked=false;}
> if(z==0){form.s_Al.checked=false;form.s_Cu.checked=true;}
> z = 1; if(z==1){form.p_ws.checked=true;form.p_awg.checked=false;}
> if(z==0){form.p_ws.checked=false;form.p_awg.checked=true;}
> z = 0; if(z==1){form.p_Al.checked=true;form.p_Cu.checked=false;}
> if(z==0){form.p_Al.checked=false;form.p_Cu.checked=true;}
> z = 68; {eval(z); temp = z; form.temp.value = temp;}// ambient temperature
> z = 36; {eval(z); g_radius = z; form.g_radius.value = g_radius;}
> z = 72; {eval(z); w_radius = z; form.w_radius.value = w_radius;}
> z = 92; {eval(z); r_height = z; form.r_height.value = r_height;}
> z = 1.187; {eval(z); s_radius1 = z; form.s_radius1.value = s_radius1;}
> z = 1.187; {eval(z); s_radius2 = z; form.s_radius2.value = s_radius2;}
> z = 35.5; {eval(z); s_height1 = z; form.s_height1.value = s_height1;}
> z = 47; {eval(z); s_height2 = z; form.s_height2.value = s_height2;}
> z = 974.5; {eval(z); s_turn = z; form.s_turn.value = s_turn;}
> z = 30; {eval(z); s_wd = z; form.s_wd.value = s_wd;}
> z = 2.4375; {eval(z); p_radius1 = z; form.p_radius1.value = p_radius1;}
> z = 5.4375; {eval(z); p_radius2 = z; form.p_radius2.value = p_radius2;}
> z = 36; {eval(z); p_height1 = z; form.p_height1.value = p_height1;}
> z = 36; {eval(z); p_height2 = z; form.p_height2.value = p_height2;}
> z = 8; {eval(z); p_turn = z; form.p_turn.value = p_turn;}
> z = 0.125; {eval(z); p_wd = z; form.p_wd.value = p_wd;}
> z = 0.1166; {eval(z); Cp_uF = z; form.Cp_uF.value = Cp_uF;}
> z = 48; {eval(z); Lead_Length = z; form.Lead_Length.value = Lead_Length;}
> z = 0.25; {eval(z); Lead_Diameter = z; form.Lead_Diameter.value =
> Lead_Diameter;}
> z = 0; {eval(z); desired_k = z; form.desired_k.value = desired_k;}
> z = 3; {eval(z); t_inner = z; form.t_inner.value = t_inner;}
> z = 12; {eval(z); t_outer = z; form.t_outer.value = t_outer;}
> z = 49; {eval(z); t_height = z; form.t_height.value = t_height;}
> form.TT.checked = true; form.TG.checked = false;
> add_toroid();
> z = 0; {eval(z); d_inner = z; form.d_inner.value = d_inner;}
> z = 6; {eval(z); d_outer = z; form.d_outer.value = d_outer;}
> z = 49; {eval(z); d_height = z; form.d_height.value = d_height;}
> form.DT.checked = true; form.DG.checked = false;
> add_disc();
> z = 120; {eval(z); x_Vin = z; form.x_Vin.value = x_Vin;}
> z = 9000; {eval(z); x_Vout = z; form.x_Vout.value = x_Vout;}
> z = 150; {eval(z); x_Iout = z; form.x_Iout.value = x_Iout;}
> z = 60; {eval(z); x_Hz = z; form.x_Hz.value = x_Hz;}
> z = 120; {eval(z); x_Vadjust = z; form.x_Vadjust.value = x_Vadjust;}
> z = 0; {eval(z); x_ballast = z; form.x_ballast.value = x_ballast;}
> z = 0; {eval(z); x_Rp = z; form.x_Rp.value = x_Rp;}
> z = 0; {eval(z); x_Rs = z; form.x_Rs.value = x_Rs;}
> z = 1; {eval(z); rsg_ELS = z; form.rsg_ELS.value = rsg_ELS;}
> z = 4; {eval(z); rsg_ELR = z; form.rsg_ELR.value = rsg_ELR;}
> z = 1800; {eval(z); rsg_rpm = z; form.rsg_rpm.value = rsg_rpm;}
> z = 3; {eval(z); rsg_disc_D = z; form.rsg_disc_D.value = rsg_disc_D;}
> z = 0.25; {eval(z); rsg_ELR_D = z; form.rsg_ELR_D.value = rsg_ELR_D;}
> z = 0.25; {eval(z); rsg_ELS_D = z; form.rsg_ELS_D.value = rsg_ELS_D;}
> z = 0; {eval(z); stat_EL = z; form.stat_EL.value = stat_EL;}
> z = 0; {eval(z); stat_EL_D = z; form.stat_EL_D.value = stat_EL_D;}
> z = 0; {eval(z); stat_gap = z; form.stat_gap.value = stat_gap;}
> if(form.SPE.checked==true){form.SPE.checked=true;form.RGE.checked=false;}
> if(form.RGE.checked==true){form.SPE.checked=false;form.RGE.checked=true;}
> }
> J A V A T C version 11.7 - CONSOLIDATED OUTPUT
> Thursday, May 01, 2008 10:12:21 PM
>
> Units = Inches
> Ambient Temp = 68°F
>
> ----------------------------------------------------
> Surrounding Inputs:
> ----------------------------------------------------
> 36 = Ground Plane Radius
> 72 = Wall Radius
> 92 = Ceiling Height
>
> ----------------------------------------------------
> Secondary Coil Inputs:
> ----------------------------------------------------
> Current Profile = G.PROFILE_LOADED
> 1.187 = Radius 1
> 1.187 = Radius 2
> 35.5 = Height 1
> 47 = Height 2
> 974.5 = Turns
> 30 = Wire Awg
>
> ----------------------------------------------------
> Primary Coil Inputs:
> ----------------------------------------------------
> 2.4375 = Radius 1
> 5.4375 = Radius 2
> 36 = Height 1
> 36 = Height 2
> 8 = Turns
> 0.125 = Wire Diameter
> 0.1166 = Primary Cap (uF)
> 48 = Total Lead Length
> 0.25 = Lead Diameter
>
> ----------------------------------------------------
> Top Load Inputs:
> ----------------------------------------------------
> Toroid #1: minor=3, major=12, height=49, topload
> Disc #1: inside=0, outside=6, height=49, topload
>
> ----------------------------------------------------
> Secondary Outputs:
> ----------------------------------------------------
> 392.18 kHz = Secondary Resonant Frequency
> 90 deg° = Angle of Secondary
> 11.5 inch = Length of Winding
> 84.7 inch = Turns Per Unit
> 0.00178 inch = Space Between Turns (edge to edge)
> 605.7 ft = Length of Wire
> 4.84:1 = H/D Aspect Ratio
> 61.989 Ohms = DC Resistance
> 26258 Ohms = Reactance at Resonance
> 0.18 lbs = Weight of Wire
> 10.656 mH = Les-Effective Series Inductance
> 875.952 mH = Lee-Equivalent Energy Inductance
> 10.758 mH = Ldc-Low Frequency Inductance
> 15.455 pF = Ces-Effective Shunt Capacitance
> 14.91 pF = Cee-Equivalent Energy Capacitance
> 21.389 pF = Cdc-Low Frequency Capacitance
> 4.79 mils = Skin Depth
> 13.069 pF = Topload Effective Capacitance
> 126.2672 Ohms = Effective AC Resistance
> 208 = Q
>
> ----------------------------------------------------
> Primary Outputs:
> ----------------------------------------------------
> 114.65 kHz = Primary Resonant Frequency
> 70.77 % high = Percent Detuned
> 0 deg° = Angle of Primary
> 16.49 ft = Length of Wire
> 10.95 mOhms = DC Resistance
> 0.25 inch = Average spacing between turns (edge to edge)
> 1.183 inch = Proximity between coils
> 1.1 inch = Recommended minimum proximity between coils
> 15.088 µH = Ldc-Low Frequency Inductance
> 0.00997 µF = Cap size needed with Primary L (reference)
> 1.438 µH = Lead Length Inductance
> 51.431 µH = Lm-Mutual Inductance
> 0.128 k = Coupling Coefficient
> 0.124 k = Recommended Coupling Coefficient
> 7.81  = Number of half cycles for energy transfer at K
> 33.72 µs = Time for total energy transfer (ideal quench time)
>
> ----------------------------------------------------
> Transformer Inputs:
> ----------------------------------------------------
> 120 [volts] = Transformer Rated Input Voltage
> 9000 [volts] = Transformer Rated Output Voltage
> 150 [mA] = Transformer Rated Output Current
> 60 [Hz] = Mains Frequency
> 120 [volts] = Transformer Applied Voltage
> 0 [amps] = Transformer Ballast Current
> 0 [ohms] = Measured Primary Resistance
> 0 [ohms] = Measured Secondary Resistance
>
> ----------------------------------------------------
> Transformer Outputs:
> ----------------------------------------------------
> 1350 [volt*amps] = Rated Transformer VA
> 60000 [ohms] = Transformer Impedence
> 9000 [rms volts] = Effective Output Voltage
> 11.25 [rms amps] = Effective Transformer Primary Current
> 0.15 [rms amps] = Effective Transformer Secondary Current
> 1350 [volt*amps] = Effective Input VA
> 0.0442 [uF] = Resonant Cap Size
> 0.0663 [uF] = Static gap LTR Cap Size
> 0.1153 [uF] = SRSG LTR Cap Size
> 249 [uF] = Power Factor Cap Size
> 12728 [peak volts] = Voltage Across Cap
> 31820 [peak volts] = Recommended Cap Voltage Rating
> 9.44 [joules] = Primary Cap Energy
> 1118.9 [peak amps] = Primary Instantaneous Current
> 53.1 [inch] = Spark Length (JF equation using Resonance Research Corp.
> factors)
> 9.1 [amps] = Sec Base Current
>
> ----------------------------------------------------
> Rotary Spark Gap Inputs:
> ----------------------------------------------------
> 1 = Number of Stationary Gaps
> 4 = Number of Rotating Electrodes
> 1800 [rpm] = Disc RPM
> 0.25 = Rotating Electrode Diameter
> 0.25 = Stationary Electrode Diameter
> 3 = Rotating Path Diameter
>
> ----------------------------------------------------
> Rotary Spark Gap Outputs:
> ----------------------------------------------------
> 4 = Presentations Per Revolution
> 120 [BPS] = Breaks Per Second
> 16.1 [mph] = Rotational Speed
> 8.33 [ms] = RSG Firing Rate
> 34.98 [ms] = Time for Capacitor to Fully Charge
> 1.19 = Time Constant at Gap Conduction
> 1768.39 [µs] = Electrode Mechanical Dwell Time
> 69.61 [%] = Percent Cp Charged When Gap Fires
> 8860 [peak volts] = Effective Cap Voltage
> 4.58 [joules] = Effective Cap Energy
> 783540 [rms volts] = Terminal Voltage
> 549 [power] = Energy Across Gap
> 56.5 [inch] = RSG Spark Length (using energy equation)
>
> ----------------------------------------------------
> Static Spark Gap Inputs:
> ----------------------------------------------------
> 0 = Number of Electrodes
> 0 [inch] = Electrode Diameter
> 0 [inch] = Total Gap Spacing
>
> ----------------------------------------------------
> Static Spark Gap Outputs:
> ----------------------------------------------------
> 0 [inch] = Gap Spacing Between Each Electrode
> 0 [peak volts] = Charging Voltage
> 0 [peak volts] = Arc Voltage
> 0 [volts] = Voltage Gradient at Electrode
> 0 [volts/inch] = Arc Voltage per unit
> 0 [%] = Percent Cp Charged When Gap Fires
> 0 [ms] = Time To Arc Voltage
> 0 [BPS] = Breaks Per Second
> 0 [joules] = Effective Cap Energy
> 0 [rms volts] = Terminal Voltage
> 0 [power] = Energy Across Gap
> 0 [inch] = Static Gap Spark Length (using energy equation)
> _______________________________________________
> Tesla mailing list
> Tesla@xxxxxxxxxxxxxx
> http://www.pupman.com/mailman/listinfo/tesla
>
>
_______________________________________________
Tesla mailing list
Tesla@xxxxxxxxxxxxxx
http://www.pupman.com/mailman/listinfo/tesla